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Abstract

We study vaccination as a public-good problem with epidemiological externalities and multi-

dimensional private heterogeneity. A unit-mass continuum of individuals chooses whether to

vaccinate. Vaccination entails a privately observed cost; remaining unvaccinated exposes the

individual to an infection loss that depends on the aggregate non-vaccination rate via a simple

incidence map. Motivated by phenomena highlighted during the COVID-19 pandemic, in par-

ticular the presence of medically vulnerable individuals who cannot safely risk either infection

or vaccination and therefore require substantially enhanced indirect protection, we develop a

framework that isolates and quantifies the size of a strategically vulnerable subgroup.

We first analyze two benchmark models with one-dimensional heterogeneity (in infection

loss and in vaccination cost, respectively) and derive closed-form expressions for equilibrium

vaccination outcomes, utilitarian planner allocations, and uniform Pigouvian instruments that

implement the planner under private information. For these benchmark models we also show

how imperfect vaccine efficacy can be incorporated in a reduced-form way, by rescaling the

incidence term, without sacrificing tractability.

Our main contribution is an analytically tractable model with joint (dual) heterogeneity

in vaccination costs and infection losses. In this two-dimensional type space, equilibrium is
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characterized by a slope-indexed indifference locus, and the non-vaccination rate exhibits a

sharp two-regime structure depending on where this locus intersects the unit square. In the

high-transmission regime, the planner’s problem reduces to the choice of a single intercept

parameter; we obtain closed-form expressions for the optimal intercept and for the residual mass

of non-vaccinators, interpreted as an endogenously determined “at-risk” subgroup trapped in a

strategic dilemma. This provides a transparent public-good framework for the design of future

policy instruments aimed at protecting medically vulnerable individuals, and, to the best of our

knowledge, constitutes the first vaccination game to treat vaccination disutility and infection

loss as independent continuous private types while retaining full analytical solvability.

Keywords: Public goods; Vaccination games; Externalities; Population games; Pigouvian in-

struments; Heterogeneity.

JEL: C72, D64, H41, I18.

1 Introduction

Vaccination is a canonical public-good problem. Individuals face idiosyncratic private costs asso-

ciated with both vaccination and infection, while the infection risk they bear depends on others’

immunisation choices through herd immunity and reduced transmission.1 Each additional vaccina-

tion lowers population risk, but this external benefit is not fully internalised in private decisions. As

in standard models of public goods, individually optimal vaccination choices generate an outcome

that is inefficiently low relative to a utilitarian benchmark.

The COVID-19 pandemic has made these issues particularly salient. It revealed substantial

heterogeneity in perceived and actual vaccine risks, in infection losses, and in attitudes towards

preventive measures, and it brought to the forefront a clinically vulnerable subgroup: individuals

whose health conditions do not allow them to safely risk either infection or vaccination and who

therefore depend critically on protection provided by others’ immunization decisions. Understand-

ing how such a group emerges in equilibrium, and how its size can be reduced by policy instruments,

is central for the design of robust vaccination policies.

A central insight, already present in the public-good formulation of Brito et al. (1991), is that

1Vaccination costs may comprise, for example, monetary and time outlays, expected side effects, and perceived
health risks associated with vaccination.
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vaccination chosen by self-interested individuals falls short of the social optimum even with homoge-

neous population and perfectly effective vaccines. Subsequent work combines strategic vaccination

decisions with epidemic dynamics and social learning (e.g., Bauch et al., 2003; Bauch and Earn,

2004), introduces preference and network heterogeneity (Manfredi et al., 2009; Tassier et al., 2015),

and considers imperfect vaccines and interdependent security (e.g., Heal and Kunreuther, 2005).

On the policy side, studies compare mandates to voluntary regimes (e.g., Browne, 2016) or analyze

subsidy schemes under private information (e.g., Yamin and Gavious, 2013). A robust message

emerges: in vaccination games, individually rational behavior does not deliver collectively efficient

coverage.

This paper develops a static vaccination game that emphasizes multi-dimensional private het-

erogeneity and simple, implementable policy instruments, with a particular eye to the protection of

medically vulnerable individuals. We model a unit mass of individuals who choose whether to vac-

cinate. Vaccination entails a privately observed cost; remaining unvaccinated exposes an individual

to an infection loss that depends on the aggregate non-vaccination rate through a transparent linear

incidence map. Each individual is described by a two-dimensional type capturing vaccination-cost

and infection-loss parameters. Within this framework we study three related models and com-

pare the outcome of individual behavior to a utilitarian planner’s allocation under information

constraints. The analysis isolates, and quantifies in closed form, a subset of types who remain

in a strategic dilemma, namely those for whom neither vaccination nor non-vaccination strictly

dominates, and provides a formal counterpart to the clinically vulnerable group highlighted by

COVID-19.

The contribution is threefold. First, we analyze two benchmark models with one-dimensional

heterogeneity—heterogeneous infection losses with homogeneous vaccination cost, and heteroge-

neous vaccination costs with homogeneous infection loss. In both cases, behavior is characterized

by a scalar cutoff, and under linear incidence and uniform types we obtain closed-form expressions

for the equilibrium vaccination outcome, the utilitarian planner’s allocation, and the net Pigouvian

transfer that implements the planner through a uniform subsidy–tax scheme. For these benchmark

models we also show how imperfect vaccine efficacy can be incorporated in a reduced-form way, by

rescaling the epidemiological incidence term, without sacrificing tractability.

Second, we study a model with joint (dual) heterogeneity in vaccination costs and infection
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losses. Types are two-dimensional and uniformly distributed, and the expected net gain from

vaccinating is linear in the type vector. The non-vaccination region in type space is defined by

a linear indifference locus whose slope aggregates epidemiological primitives, economic primitives,

and the aggregate non-vaccination rate. We characterize equilibrium non-vaccination in terms

of this slope and show that the equilibrium exhibits a sharp two-regime structure, depending on

whether the indifference locus intersects the top or the right edge of the unit square. This geometry

yields closed-form expressions for the equilibrium non-vaccination rate in each regime. To the best

of our knowledge, this is the first vaccination game to treat vaccination disutility and infection loss

as independent continuous private types while preserving full analytical tractability.

Third, in the specification with two-dimensional type heterogeneity, we analyze a utilitarian

planner who internalizes the infection externality and chooses, in reduced form, among linear

cutoff frontiers in type space. The planner’s allocation can be represented by an indifference

locus with slope pinned down by epidemiological and cost primitives and an intercept parameter

that captures the net effect of the policy and behavioral environment. In the high-transmission

regime, the planner’s problem reduces to the choice of this single intercept. We show that the

infeasibility cutoff in the infection-loss dimension is determined solely by primitives, whereas the

intercept governs the size and composition of the residual non-vaccinating set. We derive in closed

form the mass of individuals who remain in a strategic dilemma, namely those whose type makes

both actions risky, and interpret this mass as an endogenously determined “at-risk” subgroup. This

yields explicit welfare expressions under multi-dimensional private information and provides a solid

analytical basis for assessing and designing future policy measures aimed at protecting medically

vulnerable individuals who cannot safely rely on either vaccination or infection.

Section 2 introduces the population game, the incidence structure, and the planner’s problem.

Section 3 presents the two benchmark models with one-dimensional heterogeneity and characterizes

equilibrium outcomes, planner allocations, and Pigouvian instruments, including the reduced-form

treatment of imperfect efficacy. Section 4 contains the main analysis of joint heterogeneity, the

slope-indexed equilibrium structure, and the planner’s problem within the class of linear cutoff

frontiers in type space, and derives closed-form expressions for the optimal intercept and the size of

the at-risk group. Section 5 discusses policy implications and extensions, and Section 6 concludes.

Technical derivations for the joint-heterogeneity model are collected in Appendix B.
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2 The model

We consider a continuum population game with a unit mass of nonatomic individuals. Each indi-

vidual chooses an action a ∈ {V,N}, interpreted as vaccinating (V ) or not vaccinating (N). Let

x ∈ [0, 1] denote vaccination coverage and π = 1− x the share of non-vaccinators.

Vaccination entails a private disutility capturing vaccine side effects, whereas infection entails

a loss reflecting the consequences of infection.2 These primitives are scaled by privately observed

types.

Types, payoffs, and incidence. Each individual is endowed with a privately observed type

(λ, θ) ∈ [0, 1]2,

where λ indexes idiosyncratic disutility from vaccination and θ idiosyncratic loss in the event of

infection. Throughout the main text we assume that (λ, θ) is i.i.d. across individuals and uniformly

distributed on [0, 1]2; in the benchmark environments below, heterogeneity is restricted to a single

dimension.

Vaccinating a type-λ individual entails cost λcv, with cv > 0. Infection of a type-θ individual

generates loss θci, with ci > 0.

Let the infection probability of a non-vaccinator be p(π), where p : [0, 1] → [0, 1] is continuous,

strictly increasing, and satisfies p(0) = 0. In the body of the paper we adopt the linear incidence

specification

p(π) = απ, (1)

where α ∈ [0, 1] is a transmission parameter. This delivers transparent expressions while capturing

the dependence of individual infection risk on aggregate non-vaccination.3 We focus on the non-

2The parameters cv and ci can be interpreted in reduced form as aggregating all relevant components of vaccination
cost and infection loss (monetary and time costs, health and productivity effects, and perceived risks). While the
baseline formulation is phrased in terms of physiological damage, the analysis applies equally to broader economic
and behavioral interpretations.

3More generally one may consider a convex incidence function p(π) = απη with η ≥ 1. This preserves the cutoff
structure of equilibrium strategies and the qualitative comparative statics (higher cv lowers coverage; higher α or
ci raises coverage). The square-root and rational formulas obtained under the linear case are replaced by power or
implicit solutions; see Appendix A.
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degenerate case with α > 0, ci > 0, and cv > 0. Interior cutoff solutions additionally require cv not

to be too large relative to αci; otherwise both equilibrium and planner solutions lie at the boundary

with no vaccination.

In the baseline, vaccination is fully effective: vaccinated individuals face zero infection proba-

bility. Sections 3.1.1 and 3.2.1 introduce imperfect efficacy in reduced form.

Given a population state π and type (λ, θ), expected utilities in the baseline are

E[u(V ) | λ] = − cvλ, E[u(N) | θ] = −απciθ. (2)

An individual vaccinates if and only if

cvλ ≤ απciθ. (3)

Thus equilibrium strategies are threshold strategies in type space: for any given π, the vaccinating

set is described by a linear inequality in (λ, θ).

3 Benchmark models with one-dimensional heterogeneity

We begin with two benchmark models that isolate heterogeneity in a single dimension. These

environments connect directly to classic public-good models of vaccination and deliver closed-

form solutions for the individual equilibrium and the planner allocation, as well as the associated

Pigouvian instruments.

3.1 Model 1: Type-dependent ci, homogeneous cv

Types differ only in infection loss θ, while vaccination cost is homogeneous. Vaccination is perfectly

effective.

Environment. Types satisfy θ ∼ Unif[0, 1]. Vaccination costs cv > 0 are homogeneous, while

infection of type θ causes loss θci. Given π, expected utilities are

E[u(V )] = −cv, E[u(N | θ, π)] = −απciθ.
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Equilibrium. A type θ vaccinates iff cv ≤ απciθ. In a cutoff equilibrium, types with θ ≥ θ̄

vaccinate and π = θ̄. Imposing indifference for θ = θ̄ yields

cv = αciθ̄
2,

so the interior equilibrium cutoff is

θ̄∗ =

√
cv
αci

, π∗ = θ̄∗, x∗ = 1− θ̄∗, (4)

provided cv ≤ αci; for cv > αci, the unique equilibrium is θ̄∗ = 1 (no vaccination).

Planner. A utilitarian planner chooses θ̄ ∈ [0, 1] to maximize

W (θ̄) = −
∫ 1

θ̄
cv dθ −

∫ θ̄

0
αθ̄ciθ dθ = −(1− θ̄)cv −

1

2
αciθ̄

3. (5)

The first-order condition,

dW

dθ̄
= cv −

3

2
αciθ̄

2 = 0,

yields the optimal cutoff

θ̄∗∗ =

√
2

3

cv
αci

, π∗∗ = θ̄∗∗, x∗∗ = 1− θ̄∗∗, (6)

for cv ≤ 3
2αci; otherwise the optimum is at the boundary. Since θ̄∗∗ =

√
2
3 θ̄∗ < θ̄∗, the individual

equilibrium exhibits under-vaccination, x∗∗ > x∗.

Subsidization and taxation. Because infection-loss types are privately observed, the social

planner observes only the distribution of θ but not individual realizations. Hence the planner can-

not determine which individuals have “high” or “low” infection losses and thus cannot directly

target vaccination by type. The planner can, however, influence behavior by subsidizing vacci-

nators and/or taxing non-vaccinators. Let S denote a subsidy to vaccinators and T a tax on

non-vaccinators. Since only S−T matters for behavior, we normalize T = 0 and interpret S as the
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net subsidy.4

The cutoff type satisfies

−cv + S = −απciθ ⇔ cv − S = απciθ.

Evaluating this condition at (θ, π) = (θ̄∗∗, π∗∗) with π∗∗ = θ̄∗∗ gives

S∗ = cv − αci(θ̄
∗∗)2.

Using αci(θ̄
∗∗)2 = 2

3cv from the planner’s first-order condition, the Pigouvian subsidy is

S∗ =
1

3
cv, (7)

which implements the planner’s second-best under private information in this benchmark environ-

ment.

3.1.1 Imperfect efficacy

Let δ ∈ [0, 1] denote the vaccine failure probability: a vaccinated individual remains susceptible

with probability δ. With vaccination coverage x = 1− π, the mass of susceptibles is π + δ(1− π),

so a susceptible individual faces infection probability α[π + δ(1− π)]. Expected utilities are

E[u(V | δ, θ, π)] = −cv−δαπciθ−α(1−π)δ2ciθ, E[u(N | δ, θ, π)] = −απciθ−δα(1−π)ciθ. (8)

In a cutoff equilibrium, π = θ̄ and the marginal type satisfies E[u(V | δ, θ̄, θ̄)] = E[u(N | δ, θ̄, θ̄)].

This yields a quadratic in θ̄,

αci(1− δ)2θ̄2 + αciδ(1− δ)θ̄ − cv = 0, (9)

4Subsidies are financed by non-distortionary lump-sum means, so transfers do not enter the planner’s welfare
objective.
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whose economically relevant root is

θ̄∗(δ) =

√
αciδ2 + 4cv −

√
αci δ

2
√
αci (1− δ)

. (10)

This converges to the benchmark cutoff as δ → 0 and yields the unique interior equilibrium whenever

θ̄∗(δ) ∈ (0, 1); otherwise the equilibrium is at the boundary θ̄∗(δ) = 1 (no vaccination). At δ = 1,

vaccination is strictly dominated and θ̄∗(1) = 1.

The planner’s problem yields a cubic welfare function in θ̄

W (θ̄, δ) =

∫ 1

θ̄

[
−cv − δθ̄αciθ − α(1− θ̄)δ2ciθ

]
dθ +

∫ θ̄

0

[
−θ̄αciθ − δ(1− θ̄)αciθ

]
dθ.

= −1

2
αci(1− δ)2θ̄3 − 1

2
αciδ(1− δ)θ̄2 +

(
−1

2
αciδ(1− δ) + cv

)
θ̄ −

(1
2
αciδ

2 + cv

)
. (11)

The first-order condition ∂W/∂θ̄ = 0 yields a quadratic equation in θ̄,

∂W

∂θ̄
= −3

2
αci(1− δ)2θ̄2 − αciδ(1− δ)θ̄ +

(
−1

2
αciδ(1− δ) + cv

)
= 0. (12)

The optimal cutoff is

θ̄∗∗(δ) =

√
4αciδ2 − 3αciδ + 6cv −

√
αci δ

3
√
αci (1− δ)

, (13)

with limδ→0 θ̄
∗∗(δ) = θ̄∗∗. For parameter values admitting interior solutions, θ̄∗∗(δ) < θ̄∗(δ), so

under-vaccination persists under imperfect efficacy. As δ → 1, both the equilibrium and planner’s

solution converge to no vaccination and the inefficiency vanishes.

3.2 Model 2: Type-dependent cv, homogeneous ci

Types differ only in idiosyncratic side-effect risk λ, while infection loss is homogeneous. Vaccination

is perfectly effective.

Environment. Types satisfy λ ∼ Unif[0, 1]. Vaccination of type λ entails cost λcv, while each

infection causes loss ci. Expected utilities are

E[u(V | λ)] = −λcv, E[u(N | π)] = −απci.
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Equilibrium. A type λ vaccinates iff λcv ≤ απci. In a cutoff equilibrium, types with λ ≤ λ̄

vaccinate and π = 1− λ̄. Indifference implies

λ̄cv = α(1− λ̄)ci,

so the equilibrium cutoff is

λ̄∗ =
αci

cv + αci
, x∗ = λ̄∗, π∗ = 1− λ̄∗ =

cv
cv + αci

. (14)

Equilibrium strategies are monotone in λ: individuals with sufficiently low side-effect risk vaccinate;

those with high risk do not. If α = 0 or ci = 0, then λ̄∗ = 0 and no one vaccinates.

Planner. Given a cutoff λ̄, the mass of vaccinators is λ̄, each incurring side-effect cost λcv; the

mass of non-vaccinators is π = 1− λ̄, each facing expected infection loss απci. Aggregate welfare is

W (λ̄) = −cv
2
λ̄2 − αci(1− λ̄)2. (15)

The first-order condition,

dW

dλ̄
= −cvλ̄+ 2αci(1− λ̄) = 0,

yields the planner’s cutoff

λ̄∗∗ =
2αci

cv + 2αci
, π∗∗ = 1− λ̄∗∗ =

cv
cv + 2αci

. (16)

Whenever 0 < λ̄∗∗ < 1, we have λ̄∗∗ > λ̄∗ and x∗∗ > x∗: voluntary coverage is inefficiently low.

Subsidization and taxation. With privately observed λ, the planner again can use non-discriminatory

transfers. Let S denote a subsidy to vaccinators and T a tax on non-vaccinators, with T = 0 without

loss of generality.5

Under a uniform subsidy S, a type λ receives −λcv + S if vaccinated and −απci if not, so the

5Subsidies are financed by non-distortionary lump-sum means, so transfers do not enter the planner’s welfare
objective.
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cutoff type satisfies

−λcv + S = −απci ⇔ λcv − S = απci.

Evaluating at (λ̄∗∗, π∗∗) yields

S∗ = λ̄∗∗cv − απ∗∗ci =
αcicv

cv + 2αci
, (17)

which implements the planner’s cutoff under private information in this benchmark environment.

3.2.1 Imperfect efficacy

Let δ ∈ [0, 1] denote the vaccine failure probability. With coverage λ̄, the non-vaccination rate is

π = 1 − λ̄, and the mass of susceptibles is π + δ(1 − π). A susceptible individual faces infection

probability α[π + δ(1− π)]. Expected utilities are

E
[
u(V ) | λ, δ, π

]
= −cvλ− δαπci − α(1− π)δ2ci, E

[
u(N) | δ, π

]
= −απci − δα(1− π)ci. (18)

In a cutoff equilibrium, π = 1 − λ̄ and the marginal type satisfies E[u(V ) | λ̄, δ, π] = E[u(N) |

δ, π], which simplifies to

λ̄
[
cv + αci(1− δ)2

]
= αci(1− δ).

The equilibrium cutoff is

λ̄∗(δ) =
αci(1− δ)

cv + αci(1− δ)2
, (19)

with non-vaccination rate

π∗(δ) = 1− λ̄∗(δ) =
cv + αci

[
(1− δ)2 − (1− δ)

]
cv + αci(1− δ)2

. (20)

We have

lim
δ→0

λ̄∗(δ) =
αci

cv + αci
, lim

δ→1
λ̄∗(δ) = 0,

so the equilibrium converges to the benchmark as δ → 0 and collapses to zero vaccination when

the vaccine is useless.
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Aggregate welfare can be written as

W (λ̄, δ) =

∫ λ̄

0

[
−cvλ− δα(1− λ̄)ci − αλ̄δ2ci

]
dλ +

∫ 1

λ̄

[
−α(1− λ̄)ci − δαλ̄ci

]
dλ

=
[
−αci(1− δ)2 − cv

2

]
λ̄2 + 2αci(1− δ)λ̄− αci, (21)

so the planner’s first-order condition yields

λ̄∗∗(δ) =
2αci(1− δ)

2αci(1− δ)2 + cv
, (22)

with

lim
δ→0

λ̄∗∗(δ) =
2αci

2αci + cv
, lim

δ→1
λ̄∗∗(δ) = 0.

For any δ ∈ [0, 1) such that both solutions are interior, the planner vaccinates strictly more

types:

λ̄∗∗(δ)− λ̄∗(δ) =
αcicv(1− δ)[

cv + αci(1− δ)2
][
cv + 2αci(1− δ)2

] > 0. (23)

The gap is strictly positive for any imperfect but non-degenerate vaccine and converges to zero

only as δ → 1.

Connection between Models 1 and 2. Comparing Model 1 (heterogeneity in infection loss) and

Model 2 (heterogeneity in side-effect risk) illustrates that the qualitative externality is robust to

the source of heterogeneity: voluntary coverage is inefficiently low, and the planner’s threshold

exceeds the decentralized threshold in the relevant type dimension. Imperfect efficacy weakens the

epidemiological leverage of each vaccination but does not overturn this ranking for any imperfect

yet non-degenerate vaccine. In both models, the inefficiency can be mitigated by simple linear

Pigouvian instruments (subsidies to vaccination or taxes on non-vaccination) that shift the cutoff

in the relevant type dimension while preserving the underlying threshold structure. Taken together,

the two benchmark models are best viewed as two sides of the same coin.
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4 Model 3: Joint heterogeneity, equilibrium geometry, and the

at-risk group

We now turn to our main theoretical environment, in which both vaccination costs and infection

losses are heterogeneous and privately observed. Vaccination remains fully effective in this model;

imperfect efficacy is confined to the benchmark models.

4.1 Joint heterogeneity and equilibrium geometry

Setup. Types are two-dimensional and i.i.d. uniform: each individual observes (λ, θ) ∈ [0, 1]2,

where vaccination imposes cost λcv and infection entails loss θci. The non-vaccination rate is π,

infection risk is p(π) = απ, and vaccination is fully effective.

Given (2), expected utilities are

E[u(V | λ)] = −cvλ, E[u(N | θ, π)] = −απciθ.

Vaccination is (weakly) optimal if and only if

λ ≤ k θ, k :=
απci
cv

. (24)

Thus the allocation is governed by the slope k of the indifference ray in (θ, λ)-space, which aggregates

epidemiological parameters, cost scales, and the endogenous non-vaccination rate.

Let N (k) = {(λ, θ) ∈ [0, 1]2 : λ > kθ} denote the non-vaccination region. With uniform types,

its Lebesgue measure equals the non-vaccination rate, π = area(N (k)). Equilibrium values of π

and k are jointly determined by the consistency conditions

π = area(N (k)) and k =
απci
cv

.

Proposition 1 (Slope-indexed equilibrium structure). Under joint heterogeneity with uniformly

distributed (λ, θ) and linear incidence p(π) = απ, the equilibrium non-vaccination rate π∗ is given
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by

π∗ =


2cv

2cv + αci
∈ (0, 1), k∗ < 1, with λ∗

1 =
2αci

2cv + αci
< 1,√

cv
2αci

∈ (0, 1), k∗ > 1, with θ∗1 =

√
2cv
αci

< 1,

(25)

where k∗ = απ∗ci
cv

is the equilibrium slope. The low-slope regime k∗ < 1 occurs if and only if α < 2cv
ci
,

while the high-slope regime k∗ > 1 occurs if and only if α > 2cv
ci
.

The proof is a straightforward geometric calculation in [0, 1]2 and is provided in Appendix B. In

the low-slope regime the ray λ = k∗θ intersects the right edge of the unit square at (θ, λ) = (1, λ∗
1),

and the behavioral margin is primarily along the infection-loss dimension θ. In the high-slope

regime it intersects the top edge at (θ, λ) = (θ∗1, 1), and the behavioral margin is primarily along

the vaccination-cost dimension λ.

Economically, the condition α < 2cv
ci

characterizes environments with moderate transmission

intensity relative to the vaccination–infection cost ratio, a configuration that is naturally associated

with seasonal influenza–type pathogens. In such settings, a large share of individuals is near

the vaccination margin because their perceived infection consequences θci are relatively modest.

Small changes in perceived or actual infection losses—for instance, revised assessments of influenza

severity in specific risk groups—shift the indifference locus primarily along the θ-dimension and

thereby reclassify a sizable mass of individuals between vaccination and non-vaccination.

By contrast, α > 2cv
ci

corresponds to high-transmission environments, such as those observed

during major SARS-CoV-2 (COVID-19) waves. Here, the probability of infection is sufficiently

large that, for a broad range of θ, infection consequences are already substantial. The predominant

source of heterogeneity at the margin is then the disutility from vaccination, λcv. In the model, this

is reflected in a steep indifference frontier: small reductions in perceived or effective vaccination

disutility—through improved safety communication, reduced access costs, or mitigation of side-

effect concerns—translate into substantial movements along the λ-dimension and can mobilize a

large mass of individuals whose infection losses are already high.

In what follows, we restrict attention to the case in which λ/θ > 1. Addressing the opposite

case is straightforward and does not alter the robustness of the conclusions.
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4.2 Planner’s optimization and the at-risk group

In the joint-heterogeneity environment, a utilitarian social planner internalizes the infection ex-

ternality and chooses a measurable partition of the type space [0, 1]2 into vaccinating and non-

vaccinating regions. Because payoffs are linear in types and types are uniformly distributed, we

restrict attention to allocations that can be represented by a linear cutoff frontier in (θ, λ)-space,

as illustrated in Figure 1.

In the high-slope regime characterized in Proposition 1, the equilibrium indifference locus in-

tersects the top edge of the unit square at (θ1, 1). We have shown that the corresponding threshold

type

θ∗∗1

is pinned down by primitives and is independent of the intercept of the cutoff line. In particular,

combining the expression for the intersection point

θ1 =
1− λ0

k
=

(1− λ0)cv
απci

with the induced non-vaccination rate

π(λ0) =
(1− λ0)θ1

2

implies

θ1 =
(1− λ0)cv

αci · (1−λ0)θ1
2

=
2cv

αci θ1
,

and therefore

θ21 =
2cv
αci

⇒ θ∗∗1 =

√
2cv
αci

.

It is convenient to define the scale parameter

z := θ∗∗1 =

√
2cv
αci

∈ (0, 1), (26)

which summarizes the joint impact of the cost scales cv, ci and the transmission parameter α.

Given z, the planner’s remaining degree of freedom is entirely captured by the intercept λ0 ∈
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[0, 1] of the cutoff frontier on the λ-axis. At θ = 0, infection loss vanishes, so individuals with types

(λ, 0) derive no private benefit from vaccination; for these types vaccination is purely costly. The

intercept λ0 therefore has a natural interpretation: it is the maximal vaccination-cost realization

at θ = 0 that the planner succeeds in mobilizing to vaccinate, for example through pecuniary or

non-pecuniary instruments such as appeals to altruism, professional norms, or mandates.

Under this restricted class of allocations, the vaccinating region consists of

{
(λ, θ) : θ ∈ [0, z], λ ≤ λ(θ)

}
∪

{
(λ, θ) : θ ∈ [z, 1], λ ∈ [0, 1]

}
,

while the non-vaccinating region is its complement in [0, 1]2. The cutoff frontier is given by the

affine function

λ(θ) = λ0 + (1− λ0)
θ

z
, (27)

which connects the points (0, λ0) and (z, 1). Note that for any choice of λ0 ∈ [0, 1],

λ(z) = λ0 + (1− λ0)
z

z
= 1,

so all admissible frontiers pivot around the fixed point (θ∗∗1 , 1) = (z, 1). From a geometric per-

spective, varying λ0 rotates the boundary clockwise or counterclockwise around (z, 1) and thereby

adjusts the set of low-θ, high-λ types that are mobilized to vaccinate.

Under this frontier, the mass of non-vaccinating types is

π(λ0) =

∫ z

0

[
1− λ(θ)

]
dθ =

(1− λ0)z

2
, (28)

i.e. the area of the triangle above the cutoff line and below the top edge over θ ∈ [0, z]. The planner’s

problem in the high-slope regime thus reduces to choosing λ0 so as to trade off (i) the additional

vaccination costs incurred by mobilizing increasingly high-λ types with θ near zero, against (ii) the

reduction in aggregate infection losses due to the induced decline in π(λ0).

Aggregate welfare as a function of λ0 can be written as

W (λ0) =

∫ z

0

∫ 1

λ(θ)

(
−π(λ0)αciθ

)
dλ dθ +

∫ z

0

∫ λ(θ)

0

(
−cvλ

)
dλ dθ +

∫ 1

z

∫ 1

0

(
−cvλ

)
dλ dθ, (29)
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with λ(θ) given by (27) and z by (26). Evaluating the integrals and differentiating with respect to

λ0 yields a unique maximizer λ∗∗
0 (z) ∈ (0, 1).

Proposition 2 (Constrained-optimal intercept and at-risk mass). In the high-slope regime, and

within the class of allocations generated by linear cutoff frontiers passing through (θ∗∗1 , 1), the utili-

tarian planner’s problem reduces to choosing the intercept λ0 ∈ [0, 1]. The unique optimal intercept

is

λ∗∗
0 (z) =

1− z
6

1 + z
3

∈ (0, 1), (30)

where z =
√

2cv/(αci). The corresponding non-vaccination rate—the mass of individuals in the

residual “at-risk” group, for whom neither vaccination nor remaining unvaccinated is uniformly

safe in health terms—is

π∗∗(z) =
z2

4
(
1 + z

3

) ∈ (0, 1), (31)

which is strictly increasing and strictly convex in z ∈ (0, 1].6 The residual mass π∗∗(z) corresponds

to the triangular at-risk region in (θ, λ)-space illustrated in Figure 1.

Proof. See Appendix B.

Proposition 2 shows that, within this natural class of linear cutoff allocations, the planner rotates

the frontier around (θ∗∗1 , 1) as far as is welfare-improving but cannot drive the non-vaccination rate

to zero. The residual mass π∗∗(z) constitutes an endogenous at-risk subgroup: individuals with

relatively low infection losses θ ≤ z but sufficiently high vaccination costs λ ≥ λ∗∗
0 +(1−λ∗∗

0 )θ/z that

mobilization beyond λ∗∗
0 is not socially justified. Its size depends on the scale parameter z, which is

increasing in cv and decreasing in αci. Hence higher vaccination costs or lower infection losses lead

to a larger residual mass of individuals who remain unvaccinated even under the planner’s optimal

use of the available (non-pecuniary) mobilization margin.

This at-risk subgroup is particularly relevant in epidemiological environments such as COVID-

19, in which medically fragile individuals (for example, those with severe comorbidities or immuno-

suppression) may face substantial physiological risks both from infection and from vaccination. The

6Formally, one can microfound the intercept λ0, for example via a uniform subsidy scheme that mobilizes indi-
viduals to vaccinate and thereby implements the planner’s second-best allocation. We do not commit to a specific
micro-founded instrument, however, and interpret λ0 more broadly as a reduced-form index of non-targeted policy
and social forces that shift the vaccination margin.
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Figure 1: At-risk population in the type space (θ, λ) ∈ [0, 1]2. The policy boundary λ = λ∗∗
0 + k θ

(dash–dotted) runs from (0, λ∗∗
0 ) to (θ∗∗1 , 1); the infeasibility threshold at θ = θ∗∗1 is shown as a

vertical dotted line; and the reference line from (0, 0) to (θ∗∗1 , 1) is dashed. Parameters: cv = 0.15,
ci = 0.60, α = 0.62. Implied values: αci

cv
= 2.479 98, θ∗∗1 =

√
2cv/αci ≈ 0.898 01, λ∗∗

0 ≈ 0.6544, and
π∗∗ ≈ 0.155 17. α = 0.62 is the estimated child-to-child transmission probability of SARS-CoV-2;
see van Boven et al. (2024).

model provides a closed-form expression for the measure of such strategically vulnerable types and

a clear link between this measure and the underlying epidemiological and cost parameters, thereby

offering a tractable foundation for the design and calibration of protective policies targeted at these

groups.

5 Policy implications

The comparative statics of π∗∗(z) yield a simple organizing principle for policy. The size of the

at-risk subgroup increases with the scale parameter z =
√
2cv/(αci), that is, with higher vacci-

nation costs or lower infection losses, and it does so at an increasing rate. In high-transmission

environments (large α, as in severe COVID-19 waves), even a planner who is able to mobilize a sub-

stantial set of low-θ, high-λ types cannot eliminate non-vaccination entirely; policy should therefore

prioritize instruments that approximate a high intercept λ0, by encouraging or requiring vaccina-

tion among individuals who face little direct infection loss but whose behavior is epidemiologically
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pivotal, such as younger health-care workers in critical infrastructures (hospitals, outpatient clin-

ics, and nursing or elderly-care homes).7 For medically fragile individuals, whose health status

makes both infection and vaccination potentially risky, the model provides an explicit expression

for the measure of such strategically vulnerable types and a clear link between this measure and

the underlying epidemiological and cost parameters.

6 Conclusion

We have developed a public-good model of vaccination with epidemiological externalities and type

heterogeneity under private information. A linear incidence map and uniform type distributions

yield tractable benchmark models with one-dimensional heterogeneity, in which unregulated vacci-

nation is inefficiently low relative to the utilitarian planner. In these benchmarks, simple uniform

Pigouvian instruments, namely a subsidy to vaccination and/or a tax on non-vaccination, imple-

ment the planner’s allocation under private information, and welfare can be compared in closed

form between the individual equilibrium and the planner’s cutoff. Imperfect vaccine efficacy can be

incorporated in a reduced-form way without sacrificing tractability, and it systematically widens

the wedge between privately chosen and socially optimal coverage.

Our main contribution is the analysis of joint heterogeneity in vaccination costs and infec-

tion losses. In this environment the equilibrium non-vaccination rate is governed by the slope

of a linear indifference locus in type space and exhibits a sharp two-regime structure, depending

on whether the decision frontier intersects the right or the top edge of the type space. In the

high-transmission regime, the relevant frontier pivots around a primitive-determined infection-loss

threshold, and a utilitarian planner is effectively restricted to selecting the intercept of this frontier

on the vaccination-cost axis. We derive closed-form expressions for the optimal intercept and for

the size of the resulting residual non-vaccinating mass, which we interpret as an endogenously de-

termined at-risk subgroup. These expressions highlight how vaccination costs and infection harms

jointly shape policy leverage and the residual vulnerability of the population.

The framework provides an analytically transparent basis for thinking about recent and future

7A detailed analysis of concrete policy instruments and their implementation is beyond the scope of this paper
and is left to future research.
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vaccine-preventable epidemics, including COVID-19, in which medically vulnerable individuals of-

ten cannot freely accept either the risk of infection or the risk of adverse vaccine reactions. By

deriving the size of this endogenously determined at-risk group within a fully specified game-

theoretic environment, the model offers a solid foundation for constructing and calibrating future

policy environments and protective arrangements targeted at such populations.

Several extensions suggest themselves. First, allowing for incomplete information and belief

heterogeneity about infection risk or vaccine safety would introduce strategic uncertainty and po-

tentially richer equilibrium phenomena. Second, embedding the static interaction in a dynamic epi-

demic model could connect the static at-risk subgroup to long-run prevalence and disease burden.

Third, analyzing richer policy instrument sets, such as targeted subsidies, mandates, or screening

mechanisms, would help to address informational constraints regarding types and to approximate

the planner’s second-best allocation. We hope that the simple structure and closed-form results

presented here can serve as a useful benchmark for such extensions.
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Appendix A Robustness to convex incidence

Throughout the main text we assume a linear incidence function

p(π) = απ. (32)

This appendix shows that the main structural and comparative-static results are robust to replacing

(32) by a convex incidence function

p(π) = απη, η ≥ 1, (33)

at the cost of losing some of the simple closed forms.

Model 1 (heterogeneous ci, common cv). With incidence (33), an unvaccinated type θ faces

expected loss −απηciθ, while vaccination yields −cv. Given π, type θ vaccinates iff cv ≤ απηciθ,

so best responses are cutoff strategies in θ. Under θ ∼ U [0, 1], the non-vaccination rate equals the

cutoff, π = θ̄, and the equilibrium cutoff solves

cv = αciθ̄
η+1 ⇒ θ̄∗(η) =

(
cv
αci

) 1
η+1

.

Thus the cutoff structure is preserved and the qualitative comparative statics are unchanged: θ̄∗(η)

is increasing in cv and decreasing in α and ci, so equilibrium coverage x∗(η) = 1− θ̄∗(η) is decreasing

in cv and increasing in α and ci. For η = 1 this reduces to the square-root expression in the main

text.

Model 2 (heterogeneous cv, common ci). With incidence (33), an unvaccinated individual’s

expected loss is −απηci, while a type-λ vaccinator incurs −λcv. Given π, type λ vaccinates iff

λcv ≤ απηci, so best responses are cutoff strategies in λ. Under λ ∼ U [0, 1], the vaccination rate

equals the cutoff, x = λ̄, so π = 1− λ̄ and the equilibrium cutoff solves

λ̄cv = αci(1− λ̄)η.
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Defining f(λ̄) = λ̄cv−αci(1−λ̄)η, we have f(0) = −αci < 0, f(1) = cv > 0, and f ′(λ̄) = cv+αciη(1−

λ̄)η−1 > 0, so there exists a unique λ̄∗(η) ∈ (0, 1). Implicit differentiation of f(λ̄∗(η)) = 0 yields

∂λ̄∗/∂cv < 0 and ∂λ̄∗/∂α > 0, ∂λ̄∗/∂ci > 0, so equilibrium coverage x∗(η) = λ̄∗(η) is decreasing

in cv and increasing in α and ci. For η = 1, we recover the rational closed-form expression in the

main text; for general η ≥ 1, the cutoff is characterized implicitly by the above equation.

In sum, replacing the linear incidence (32) by a convex power function (33) preserves (i) thresh-

old strategies in the relevant type dimension and (ii) the sign of the key comparative statics, while

replacing the square-root and rational formulas by power or implicit solutions.

Appendix B Joint heterogeneity in vaccination and infection costs:

derivations

This appendix collects derivations for the joint-heterogeneity environment summarized in Section 4.

Appendix B.1 Individual choice and the indifference frontier

Types are two-dimensional and i.i.d., uniformly distributed. Each individual observes (λ, θ) ∈

[0, 1]2, with vaccination cost λcv and infection loss θci. Let the unvaccinated share be π ∈ [0, 1]

and exposure be p(π) = απ for α ∈ (0, 1]. Vaccination is fully effective. Expected utilities are

E[u(V | λ)] = −cvλ, E[u(N | θ)] = −απciθ. (34)

An individual vaccinates if and only if

λ ≤ kθ, k :=
παci
cv

. (35)

The equilibrium is governed by the slope of the indifference ray k, which aggregates the epidemio-

logical force of infection (α), the economic primitives (ci, cv), and the endogenous non-vaccination

share (π). For (λ, θ) ∼ Unif[0, 1]2, the non-vaccinator set

N (k) = {(λ, θ) ∈ [0, 1]2 : λ > kθ}
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has Lebesgue measure π(k), and coverage is x(k) = 1 − π(k). Solving delivers an individual

equilibrium with a slope-based regime change at k = 1.

Appendix B.2 Slope-indexed equilibria

We distinguish two behavioral regimes, each yielding an interior equilibrium under specific param-

eter constraints.

Low-slope equilibrium k < 1. The indifference ray hits the right boundary at (θ, λ) = (1, k),

and the non-vaccinating region is the rectangle {(λ, θ) : λ ∈ [k, 1], θ ∈ [0, 1]}. Hence

π(k) = 1− k.

The equilibrium condition k = απci/cv therefore reads

k =
αci
cv

(1− k),

which yields

k∗ =
αci

2cv + αci
, π∗ = 1− k∗ =

2cv
2cv + αci

.

This regime occurs if and only if k∗ < 1, i.e.,

α <
2cv
ci

.

High-slope equilibrium k > 1. Now the indifference ray hits the top boundary at (θ1, 1),

where θ1 = 1/k. The non-vaccinating region is the triangle above the ray and below the top edge

for θ ∈ [0, θ1], so

π(k) =
θ1
2

=
1

2k
.

The equilibrium condition k = απci/cv becomes

k =
αci
cv

· 1

2k
,
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so that

k2 =
αci
2cv

, π∗ =
1

2k∗
=

√
cv

2αci
, θ∗1 =

1

k∗
=

√
2cv
αci

.

This regime occurs if and only if k∗ > 1, i.e.,

α >
2cv
ci

.

Appendix B.3 Endogenous unvaccinated mass and the scale parameter z

With a policy-induced intercept λ0 on the λ-axis, the indifference locus is

λ(θ) = λ0 + kθ.

In the high-slope regime, the line intersects the top boundary at (θ1, 1), where

θ1 =
1− λ0

k
=

(1− λ0)cv
απci

.

The induced unvaccinated mass is

π =

∫ θ1

0
(1− λ(θ)) dθ =

∫ θ1

0
(1− λ0 − kθ) dθ = (1− λ0)θ1 −

kθ21
2

=
(1− λ0)θ1

2
. (36)

Substituting for θ1 and k and solving yields the infeasibility cutoff

θ∗∗1 =

√
2cv
αci

=: z,

and the compact representation

π(λ0) =
(1− λ0)z

2
.

The scale parameter z summarizes the joint impact of epidemiological and cost primitives.
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Appendix B.4 Planner’s optimization

The planner chooses λ0 ∈ [0, 1) to maximize aggregate welfare:

W (λ0) =

∫ z

0

∫ 1

λ(θ)
(−παciθ) dλdθ

+

∫ z

0

∫ λ(θ)

0
(−cvλ)dλdθ

+

∫ 1

z

∫ 1

0
(−cvλ) dλdθ

= (−παci)

∫ z

0
(1− λ0)

(
1− θ

z

)
dθ

+
(
−cv

2

)∫ z

0

(
θ

2
+ λ0 ·

z − θ

z

)2

dθ

+

∫ 1

z

(
−cv

2

)
dθ, (37)

with λ(θ) = λ0 + (1 − λ0)
θ
z and z =

√
2cv/(αci). Using π(λ0) = (1 − λ0)z/2 and collecting terms

yields the first-order condition W ′(λ0) = 0, whose unique solution in (0, 1) can be written

λ∗∗
0 =

1− z
6

1 + z
3

∈ (0, 1).

Substituting λ∗∗
0 into π(λ0) gives

π∗∗(z) =
z2

4
(
1 + z

3

) ,
as stated in Proposition 2.
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